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The conditions for the creation of nodes of normal modes of vibration from the
cancellation of poles and zeros are established when either the poles or the zeros (or
both) appear as repeated eigenvalues. The analysis is illustrated by numerical
examples including the case of a pole}zero cancellation at every co-ordinate at the
same frequency which is shown to occur whenever there are repeated poles. If there
are repeated poles and repeated zeros at the same frequency then the number of
poles must be either one more, one less or equal to the number of zeros.

( 2000 Academic Press
1. INTRODUCTION

There is interest in manipulating the nodes of normal modes of vibration mainly for
two reasons: (i) to protect sensitive equipment from damage by siting it at
a node*this might involve shifting the node spatially because of physical
constraints; and (ii) to desensitize a part that is less well understood than the rest of
the structure*this can bring about an improvement in the capability of
a mathematical model to represent the dynamics of a physical structure. Vibration
nodes are created by the mutual cancellation of a pole (natural frequency) with
a zero (antiresonance). Mottershead and Lallement [1] established the necessary
and su$cient conditions for the creation of a vibration node by the cancellation of
a pole with a distinct zero. Mottershead [2] studied the sensitivities of the zeros.

There are four main categories of modi"cation methods for shifting poles and
zeros. The unit-rank modi"cation approach [1, 3, 4] has the advantage that the
natural frequencies of a modi"ed structure can be inferred from receptances
obtained from the structure in its unmodi"ed condition. The more general methods
[5}7] require the adjustment of several mass and sti!ness terms and are related to
0022-460X/00/110219#13 $35.00/0 ( 2000 Academic Press
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the problem of "nite element model updating [8, 9]. Cha and Pierre [10] used
a chain of mass}spring oscillators to impose a node either at the point of
connection (collocated) or elsewhere on the structure (uncollocated), and Ram
and Elhay [11] studied the multi-degree-of-freedom dynamic absorber. The fourth
category is that of pole}zero assignment by using active control techniques
[12, 13].

This paper addresses the problem of pole}zero cancellation when there are either
repeated poles or repeated zeros (or both) present in the measured frequency
responses. These cases were not considered in reference [1] and their investigation
leads to to an understanding of how nodes are created in the presence of multiple
roots (either zeros or poles). In a numerical example it is shown how a pole}zero
cancellation at every co-ordinate at the same frequency can produce an apparently
lower order system than the dimension of the mass and sti!ness matrices. This
phenomenon is shown to occur whenever there are repeated poles.

2. COINCIDENT POLES AND ZEROS

When the sti!ness and mass matrices, K, M3Rn]n, M"MT'0, K"KT*0 (or
'0), are partitioned so as to separate a co-ordinate then, choosing the "rst
co-ordinate without loss of generality, the matrices can be written as
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where B~1A is similar to M~1K. Then by expanding the determinant

det (A!j
r
B)"0, (10)
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one obtains an expression previously derived by Mottershead and Lallement [1]
which gives the rth pole j

r
in terms of the zeros jM
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Certain physical insights for the pole}zero cancellation problem (j
r
"jM

s
) can be

obtained from equation (11) and are best appreciated when it is re-written in full as
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When the sth zero jM
s
is distinct it is clear that the term (i

s
!j

r
k
s
), which occurs as

a multiplier in all components but one of the sum in equation (12), will go to zero.
Then, since (i

i
!j

r
k
i
)O0, i"1,2, n!1, (iOs), it follows that
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)"0. (13)

By combining equations (13), (8) and (9) it is found that when the zeros are distinct
then a pole}zero cancellation j

r
!jM

s
always brings about the relationship

(k1 !jM
s
m6 )T w

s
"0. (14)

From equations (1), (2) and (14) it is apparent that the eigenvalue problem of the
distinct zeros can be written as

AC
k1 T
} } }

K1 D!jM
s C

m6 T
} } }

M1 D Bw
s
"0. (15)

Since the zeros of the cross-receptance h
jk

are given by jM
i
(K, M )

jk
, i"1,2, n!1,

where the subscripts denote the deletion of the jth row and kth column of K and M,
then the pole}zero cancellation that occurs in the point receptance h

11
must also

occur in all the cross receptances of the "rst co-ordinate. Such a cancellation can be
recognized as a node of the rth normal mode because (i) if an input is applied at
a node then the mode will not be excited anywhere in the structure, and (ii)
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a measurement at a node will exclude the mode regardless of where the input is
applied. By comparing equation (15) with the eigenvalue problem of the poles,

(K!j
r
M)u

r
"0, (16)

it is seen that

u
r
"G

0
w

s
H , (17)

which shows that the "rst co-ordinate is indeed a vibration node. Since w
s
spans

null ([k1 T---
K]!j1 , [m1 T---

M1 ]) then (0---w
s
) must span null (K!j

r
M), j
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!jM
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, when either j

r
is

distinct or u
r
"( 0---w

s
) is a combination of eigenvectors of repeated poles. It was

shown by Mottershead and Lallement [1] that j
r
"jM

s
is a necessary condition and

equation (14) is a su$cient one for the creation of a vibration node. Furthermore,
when the coincident zero is distinct a cancellation is impossible unless equation (14)
is satis"ed. In the sequel, we consider how vibration nodes are formed when there
are repeated zeros in the measured receptances, and how repeated poles will always
give rise to pole}zero cancellations at every co-ordinate.

3. VIBRATION NODES FROM REPEATED ZEROS

In the case of a repeated zero of multiplicity m#1, jM
s
"jM

s`t
,

t"1,2,m (m#1)n!1), every component of the sum in equation (12) will
independently go to zero without ful"lling the su$cient condition (14). It will be
demonstrated that this has no e!ect on the well-known characteristic of vibration
nodes, that a pole}zero cancellation in a point receptance h

j
is accompanied by

a cancellation in every cross receptance h
jk
"h

kj
, kOj. Consider the eigenvalue

equation of the zeros,
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and also the eigenvalue equation of the poles (but omitting the "rst row),
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Then since (k1 !j
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We now consider how a cancellation that fails to satisfy equation (14) may produce
a node.
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The eigenvectors of the repeated zeros must span the null space of (K1 !jM
s
M1 ). So,
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and any vector of the form
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will be an eigenvector. It follows that if and only if
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and

jM
s
"j

r
, (22)

will a vibration node be created at the "rst co-ordinate (u
1r
"0). Equation (21) is

a more general form of the su$cient condition (14). It means that there must be
a zero j1

s
in the point receptance h

j
and in every cross receptance h

jk
to cancel with

the pole j
r
and produce a node at the jth co-ordinate. It is impossible for u

1r
to take

any other value than zero if j
r
is distinct.

3.1. NUMERICAL EXAMPLE

When all the sti!nesses (except k
8
"5

3
) and all the masses of the system in Figure

1 are unity the poles and zeros (of receptance h
44

) take the values given in Table 1.
A pole and two zeros coincide at 2 rad/s. The eigenvectors of the two zeros are
listed in Table 2. The row (k1 !jM

s
m6 )T"(0 0 !1 !1 0) so that the vector a in

equation (21) can be determined within an arbitrary scalar multiplier to be
a"(0)9186, !0)3953)T. There is no other combination of the vectors w

4
and w

5
that will satisfy equation (21). This means that only one of the two zeros can
cancel with the pole. The point receptance h

44
is plotted in Figure 2 where a

single zero (the uncancelled one) is shown to exist at 2 rad/s. Since the eigen-
vector of the uncancelled zero fails to satisfy equation (14) this zero cannot exists
in the cross-receptances, such as h

34
which is shown in Figure 3. There is,

however, evidence of the pole}zero cancellation in Figure 3 which shows only "ve
poles.

4. VIBRATION NODES FROM REPEATED POLES

In the case of repeated poles of multiplicity p#1, j
r
"j

r`q
, q"1,2, p (p#

1)n), the eigenvalue equation can be written as

(K!j
r
M) [u

r
u

r`1
,2,u

r`p
]b"0. (23)



Figure 1. Six-degree-of-freedom mass}spring system.

TABLE 1

¹able of poles and zeros

Frequency
(rad/s)

Pole Zero

0)7530 0)8165
0)9129 1)0000
1)2896 1)4142
1)6923 2)0000
2)0000 2)0000
2)1770
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TABLE 2

Eigenvectors of the coincident zeros

Eigenvectors

w
4

w
5

0)4082 0
!0)8165 0

0)4082 0
0 0)9487
0 !0)3162

Figure 2. Frequency response h
44

.
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When the poles are coincident with zero jM
s

to produce a node at the "rst
co-ordinate b must be selected so that

(u
1r

u
1, r`1

,2, u
1, r`p

]b"0. (24)

To create a node at a di!erent co-ordinate a di!erent combination of the vectors
would be needed.

(u
jr

u
j, r`1

,2, u
j, r`p

]c"0, jO1, (25)

so that in principle it would be possible to produce a node at every co-ordinate of
the system at the same frequency. The necessary and su$cient conditions
established in reference [1] would hold for the case of a distinct zero. In the case of



Figure 3. Frequency response h
34

.
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both repeated poles and repeated zeros, at the same frequency, the necessary and
su$cient conditions in equations (21) and (22) would hold. Since the eigenvectors
w

s
w

s`1
,2, w

s`m
are independent it is apparent that in general the a which satis"es

equation (21) is not unique. Therefore, it is generally possible for two (or more)
poles to be cancelled by the same number of zeros to produce coincident vibration
nodes at the same co-ordinate. It is shown in Appendix A that there are three cases
which include all circumstances of repeated poles and repeated zeros at the same
frequency. Speci"cally, there must be one more pole than the number of zeros, one
more zero than the number of poles, or equal numbers of poles and zeros at every
co-ordinate. In every case equation (21) is satis"ed so that every cancellation
produces a vibration node. The interlacing rules will not allow two repeated poles
in a point receptance without there being a zero at the same frequency. Since
a cancellation always creates a node (so that the zero is present in the point
receptance and all the cross receptances of the same co-ordinate), it follows that
whenever there are two repeated poles there will be a pole}zero cancellation at all
co-ordinates at the same frequency.

4.1. NUMERICAL EXAMPLE

When, in Figure 1 m
2
"1)388, m

4
"2)951 and a sti!ness k

10
"0)644 is

introduced between m
2

and m
4
, and all the other masses and sti!ness are unity two

repeated poles occur at 0)3 Hz and a di!erent coincident zero appears in every
point receptance. The results are summarized in Table 3. The eigenvectors of the
repeated poles are given in Table 4 from which it can be seen that a vector
b"(0)9975, 0)0714)T will satisfy equation (24) to give a vibration node at m

1
.

Di!erent combinations of the vectors u
5

and u
6

are required to produce the



TABLE 3

¹able of poles and zeros (Hz)

Zeros

Poles h
11

h
22

h
33

h
44

h
55

h
66

0)0991 0)1023 0)1095 0)1125 0)1218 0)1205 0)1133
0)1332 0)1383 0)1542 0)1653 0)1648 0)1592 0)1912
0)1936 0)2206 0)2251 0)1944 0)2251 0)1955 0)2338
0)2353 0)2855 0)2398 0)2863 0)2941 0)2374 0)2847
0)3000 0)3000 0)3000 0)3000 0)3000 0)3000 0)3000
0)3000

TABLE 4

Eigenvectors of the coincident poles

Eigenvectors

u
5

u
6

!0)0337 0)4708
0)0524 !0)7311

!0)1284 0)4517
0)1471 0)0297

!0)9114 !0)1837
0)3570 0)0720
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vibration nodes at the other co-ordinates. When the zero term created by
combining u

5
and u

6
is omitted one obtains the eigenvector of a coincident zero of

the point and cross-receptances at the same co-ordinate. This point is illustrated in
Figures 4}6. In Figures 4 and 5, all six point receptances are plotted and since there
are only "ve peaks in each plot it is apparent that a pole}zero cancellation has
occurred at each co-ordinate. Figure 6 shows that the same cancellation occurs in
the cross-receptances. This means that there is a vibration node of a normal mode
at 0)3 Hz at every co-ordinate.

5. CONCLUSIONS

Zeros generally occur at di!erent frequencies in di!erent frequency response
measurements. But any frequency response that includes the co-ordinate of a node
of a normal mode of vibration (either as the driving point or the measured point)
will not contain any contribution from the mode. Therefore, for a pole and zero to
cancel and produce a vibration node the zero must be present in the point
receptance and all the cross receptances at the co-ordinate of the node. To create
a node in this way there must be a coincident (same eigenvalue) pole and zero and



Figure 4. Point receptances h
11

, h
22

and h
33

.

Figure 5. Point receptances h
44

, h
55

and h
66

.
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the eigenvector of the pole (excluding the nodal co-ordinate) must be identical to
eigenvector of the zero. A pole and zero cannot cancel in any other way than to
produce a node, although they may coexist at an identical frequency when there are
either repeated poles or repeated zeros (or both). Di!erent combinations of the
eigenvectors of a repeated pole will always combine so that a cancellation with
a di!erent zero at every co-ordinate will create a vibration node at every
co-ordinate at the same frequency.



Figure 6. Cross-receptances h
14

, h
25

and h
36

.
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APPENDIX A: REPEATED POLES AND REPEATED ZEROS AT
THE SAME FREQUENCY

u
r
u
r`1

,2, u
r`p

are independent vectors which span null[K!j
r
M].

w
s
w

s`1
,2,w

s`m
are independent vectors which span null[K1 !jM

s
M1 ], jM

s
"j

r
.

A.1. CASE (a): MORE POLES THAN ZEROS (p'm)

The columns of

C } } } } } } } } } } } } }
0

w3
s
w3

s`1
,2 ,w3

s`(p~1)
D

are p independent vectors formed from linear combinations of u
r
u

r`1
,2, u

r`p
with the constraint that the "rst term in each vector is zero. The choice of the "rst
term is consistent with the analysis elsewhere in the paper and does not incur any
loss of generality. The vectors w3

s
w3

s`1
,2,w3

s`(p~1)
all satisfy the condition

(k1 !jM
s
m1 )T w3

i
"0, i"s, s#1,2, s#(p!1),

and they are also eigenvectors of the repeated zeros. Thus, each wM
i
must be an

independent linear combination of the vectors w
s
w

s`1
,2,w

s`m
and m"p!1.

This means that if there are fewer zeros than poles only one pole remains
uncancelled by the zeros.

A.2. CASE (b): MORE ZEROS THAN POLES (m'p)

The vectors w3
r
w3

r`1
,2,w3

r`(m~1)
can be formed from linear combinations of

w
s
w

s`1
,2,w

s`m
with the contraint that,

(k1 !jM
s
m1 )T w3

i
"0, i"r, r#1,2, r#(m!1),

It follows that

C } } } } } } } } } } } } }
0

w3
r
w3

r`1
,2 ,w3

r`(m~1)
D

contains in its columns the eigenvectors of the repeated poles and that p"m!1.
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A.3. CASE (c): EQUAL NUMBERS OF REPEATED POLES AND ZEROS (p"m).

This is the case when

[u
r
u
r`1

,2, u
r`p

]"C } } } } } } } } } } }
0

w3
s
w3

s`1
,2 ,w3

s`m
D

so that a node is produced at the "rst co-ordinate in the eigenvector of every
repeated pole. This is the only available result when mOp!1 and pOm!1.
When it occurs the repeated poles cancel with all the repeated zeros.
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